HIGH EFFICIENCY BLOWERS
A CASE STUDY

JOHN LINDSTROM – CITY OF PUEBLO, CO
RICH HENDERSON – BLACK & VEATCH
PROJECT OVERVIEW

- Secondary Treatment Conversion of Trickling Filter/Solids Contact to Biological Nutrient Removal (BNR)
 - Design Flow – 19 mgd MMF
 - Effluent Limit Driven – Nitrogen and Phosphorous

- Addition of Preanoxic, Anaerobic, and Anoxic Reactors (PAAR Complex)

- Double Oxic Reactor Volume
 - 294K to 588k cubic feet

- Blower Capacity
 - Old - 7,344 scfm Firm Capacity, 500 hp
 - New – 20,800 scfm Firm Capacity, 1324 hp
PLANNING

• Why High Speed Turbo Blowers?
 • Energy Efficiency
 • Low Maintenance
 • Size – Utilization of Existing Space

• Manufacturer Preference?
 • ABS – Magnetic Bearing
 • HSI, APG-Neuros, KTurbo (Aerzen) – Airfoil Bearing
 • Turblex – Inlet Guide Vanes
 • Decided Not to Include
 • Larger Size Ranges Still in Development During Our Design
PLANNING – ENERGY EFFICIENCY

Made Early Decision That All HSTBs Basically Equal in Efficiency

Efficiency vs. Turndown of Various Blowers (Compressors)

- IGV & VD Single Stage
- High Speed Turbo Gearless
- Single Stage IGV Only
- Multistage
- Positive Displacement

Note: Curves illustrate an entire family of blowers and are for comparative purposes only. Contact blower manufacturers for efficiencies at specific design conditions.

Courtesy of Turbex, Inc.
PLANNING - ENERGY EFFICIENCY

• Maximize Efficiency Through Control
 • Master Control Panel
 • DO Control – Minimize Over Aeration
 • Most Open Valve Control
 • DO Controls Valve Position, Valve Position (MOV) Controls Pressure (Main Header) Set Point, Blowers Work to Maintain Pressure Set Point
PLANNING – MAINTENANCE

• ABS, Neuros, HSI, KTurbo Virtually Maintenance Free
 • Filters

• Cooling Systems
 • ABS, K-Turbo – Air Cooled
 • K-Turbo – Discharged to Process
 • ABS – Separate Discharge Pipe
 • Neuros, HSI – Liquid Cooled
 (Larger Sizes)
 • Neuros – Internal
 • HSI - External
PLANNING – USE OF EXISTING SPACE

54 foot x 26 foot
PLANNING – USE OF EXISTING SPACE
PLANNING – USE OF EXISTING SPACE
PLANNING – USE OF EXISTING SPACE
PLANNING – MANUFACTURER PREFERENCE

• U.S. Installations
 • How Many, How Long
 • ABS – DePere, WI (2004)

• Service Centers
 • HSI – Proven Record with Traditional Blowers
 • Houston, TX
 • All Others Fairly Limited

• Proprietary Equipment
 • KTurbo – Everything Within Machine Made by KTurbo
 • Including VFD and Local Control Panels
PLANNING – MANUFACTURER PREFERENCE

- **Controls**
 - Master Control Panel
 - In House or Working Relationship with Specific Companies

- **Cooling System**

- **Air versus Magnetic Bearing**

- **Costs**
 - ABS
 - HSI and Neuros
 - KTurbo
PLANNING – MANUFACTURER PREFERENCE

• Preferred Manufacturers Ranking
 • ABS – Preference for the Air Cooled; Mag Bearing; Years In Operation in U.S.
 • Neuros and HSI – Mainly Equal in Quality/References; HSI Manufacturing History
 • KTurbo – Proprietary Equipment Not Favorable
DESIGN AND BIDDING

• Efficiency
 • Didn’t Specify Efficiency
 • Maximum Power Draw (Wire to Air)
 • Master Control Panel – Experienced Integrator

• No Evaluated Bids
 • Testing Standards

• Competitive Pricing

• Designed Around ABS
 • Planning Phase Work
EFFICIENCY – MASTER CONTROL PANEL

- Integrator
- How Do Blowers Interact With One Another
- Most Open Valve Control

Does the Blower System Supplier have at least 5 years in-house I&C experience with the dissolved oxygen/most open valve method of blower control, along with the capabilities to construct and program the MCP?

- YES
 - Blower System Supplier may use their own I&C department. Proof of experience will be required. Projects cited must be in full-scale operation. Mandatory meetings will be required between Blower System Supplier, General Contractor, and General Contractor’s I&C Subcontractor in order to coordinate flowmeters, control valves, dissolved oxygen meters, and any other appurtenances required fully functioning air delivery delivery system.

- NO
 - Blower System Supplier may retain the services of their own I&C subcontractor. Proof of experience will be required. Projects cited must be in full-scale operation. Mandatory meetings will be required between Blower System Supplier, Blower System Supplier’s I&C Subcontractor, General Contractor, and General Contractor’s I&C Subcontractor in order to coordinate flow meters, control valves, dissolved oxygen meters, and any other appurtenances required for a fully functioning air delivery system.

Does the Blower System Supplier have an established working relationship with an I&C Subcontractor? “Established working relationship” refers to a minimum of three completed jobs (in full-scale operation) with the I&C Subcontractor. The completed jobs shall have used dissolved oxygen/most open valve blower control, and the I&C Subcontractor must have provided the MCP along with all of the programming.

- YES
 - Blower Supplier shall retain the services of the General Contractor’s I&C Subcontractor for use as the Control System Supplier.

- NO
Testing

- No Test Standard For HSTBs
 - Utilize ASME PTC 10 or ISO 5389
- CAGI/ISO Committee
 - Target: Available by Spring 2012 on CAGI site
 - ~3 years for Adoption by ISO, Annex to 5389
- ASME
 - Target: 1 to 2 years
 - New Standard, PTC-13
COMPETITIVE PRICING

• Named Four Manufacturers
 • Three Price Ranges
 • ABS Most Expensive; KTurbo Least Expensive
 • Open Specification, Others Wouldn’t Bid Directly Against KTurbo

• Broke Blowers Down by Tiers – Bid Alternates
 • Tier 1 (Base Bid, Designed Layout) – Mag Bearing, Non Proprietary VFD and LCP
 • Tier 2 (Bid Alt) – Air Bearing, Non Proprietary VFD and LCP
 • Tier 3 (Bid Alt) – Air Bearing
COMPETITIVE PRICING

BID ALTERNATE 1 – Adjustment to Base Bid for Furnishing Tier 2 or Tier 3 Blower System Suppliers

Bidder is required to offer Bid Price Adjustments using pricing from all Tier 2 and Tier 3 blower system suppliers offering pricing for the Project. Bidder offers the following Bid Price Adjustments:

<table>
<thead>
<tr>
<th>Tier 2 Blower System Supplier</th>
<th>Add/Deduct (indicate one)</th>
<th>Bid Price Adjustment ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. HSI</td>
<td>Deduct</td>
<td>$290,000</td>
</tr>
<tr>
<td>2. Neuros</td>
<td>Deduct</td>
<td>$170,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier 3 Blower System Supplier</th>
<th>Add/Deduct (indicate one)</th>
<th>Bid Price Adjustment ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. K Turbo</td>
<td>No Bid</td>
<td></td>
</tr>
</tbody>
</table>
ISSUES WITH BID ALTERNATIVE APPROACH

• Design of New Layout If ABS Wasn’t Within Budget
 • Contractors Aren’t Designers
 • Did They Price Work The Same
 • One Contractor Didn’t Bid the Alternates
STATUS OF PROJECT

• Blowers Have Been Checked Out by ABS
• Operational Testing – Two to Three Weeks
• Primary Effluent to New Process End of June
QUESTIONS