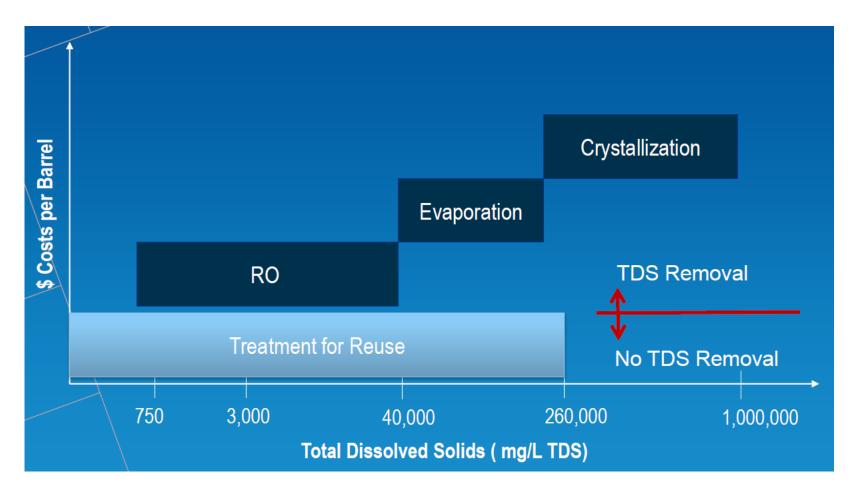
Concentrate Management Utilizing Brine Bulb Technology (BBT)

2013 Industrial Water Reuse Specialty Conference December 10, 2013 Long Beach, CA

Presentation Prepared by: Eric Dole, PE, Sr. Water/Wastewater Energy Engineer Tetra Tech, Inc.

US Patent No. 8,273,156

complex world


The Problem

- What to do with aggressive, high TDS wastewater/brine
 - Concentrate stream from Reverse Osmosis (RO)
 - Spent regenerate stream from IX resin
 - Flowback / produced water from frac operations (oil/gas industry)
 - Agricultural liquid waste stream
 - Cooling tower blow-down

FETRA TECH

- May be > 10 x the cost of bulk water treatment to treat brine
 - Brine is typically between 10-30% of bulk flow

Courtesy of CDM Smith Presentation "Key Considerations for Frac Flowback / Produced Water Reuse and Treatment"

Brine Background

- Concentrate stream contains all of the constituents removed in the RO process:
 - High TDS concentration

- 2,000 to > 40,000 mg/L for brackish applications
 - @ 75% recovery
- 60,000 to >80,000 mg/L for seawater applications
 - @ 50% recovery
- Depends on RO feed pressure, pre-treatment, membrane recovery and raw water quality
- Spent brine stream in IX resin regeneration process contains:
 - High TDS concentration
 - 100,000 to 200,000 mg/L depending on brine strength
 - Plus all cations and anions removed in IX process

Brine Background

• Typical Raw Flowback WQ

Contaminate	Min Value (mg/L)	Max Value (mg/L)		
TDS	40,000	185,000		
Sodium	10,000	55,000		
Calcium	2,200	34,000		
Magnesium	200	5,200		
Iron	20	600		
Chloride	20,000	110,000		
Sulfate	10	80		
Barium	30	6,000		
Strontium	100	4,300		

• SEWER DISPOSAL - Brine is not removed in conventional activated sludge WWTPs

FETRA TECH

- High TDS water passes through to end user (golf courses, streams and rivers)
- Causes osmotic stress on plants / grass.
- **DEEP WELL INJECTION** Faces significant regulatory concerns...max allowable TDS of 8,000 mg/L
 - Well Classification Delay Until Hydrogeology and Water Chemistry are Characterized...must be in confined aquifer with no transmissivity to other aquifers
 - Permit (Extensive Public Participation)

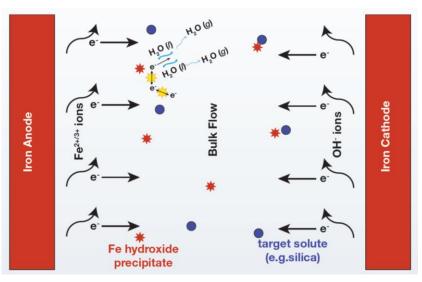
- EVAPORATION PONDS Land acquisition is costly and generally only used in arid regions.
 - Turbo Misters help removal but only 15-20% efficient and require excessive kWh/gal costs
 - Require HDPE liners, or impermeable clay, and leak detection
- **PRETREATMENT + RO + EVAP POND** Lime softening and nanofiltration to increase RO recovery...further concentrate brine (10-15% of feed flow)
 - Lime Softening = costly settling basins, storage silos, chemical addition, pumps, filter press
 - NF membranes = feed pumps chemicals and additional controls are costly.

- BRINE CONCENTRATOR/CRYSTALLIZERS Utilizes thermal vapor recompression and multiple effects to thermally evaporate brine
 - Relatively large footprint : flow ratio
 - Capital & operation cost intensive

- OCEAN OUTFALL Not practical for land-locked applications.
 - Falling out of favor due to environmental concerns.
 - Brine salt concentration = 20% denser than ambient seawater concentration which makes it sink to ocean floor... kills sea grass habitats
- WETLAND TREATMENT Currently in development.
 - Utilizes salt tolerant wetland plants to remove challenging contaminates.

FETRA TECH

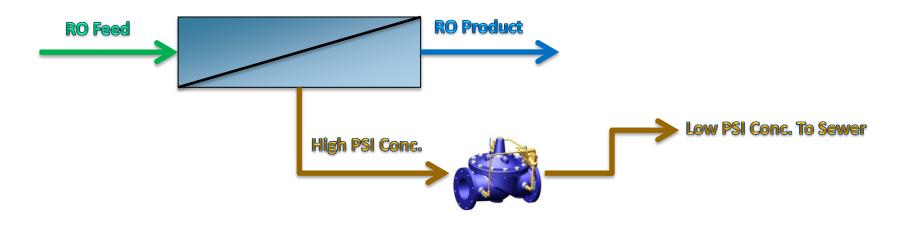
A Solution - BBT

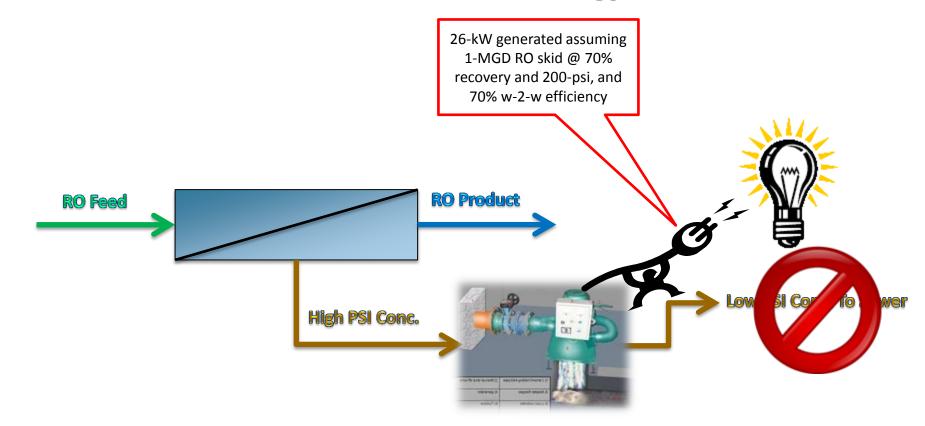

• BBT utilizes:

FETRA TECH

- Multiple Effect Vacuum Distillation + Electro-coagulation (EC)
 - Constant vacuum technology w/ no moving parts
 - Allows depressed boiling point = less thermal input
 - Up to 3 effects achieved
 - Promotes efficient use of heating / cooling process

• BBT utilizes:

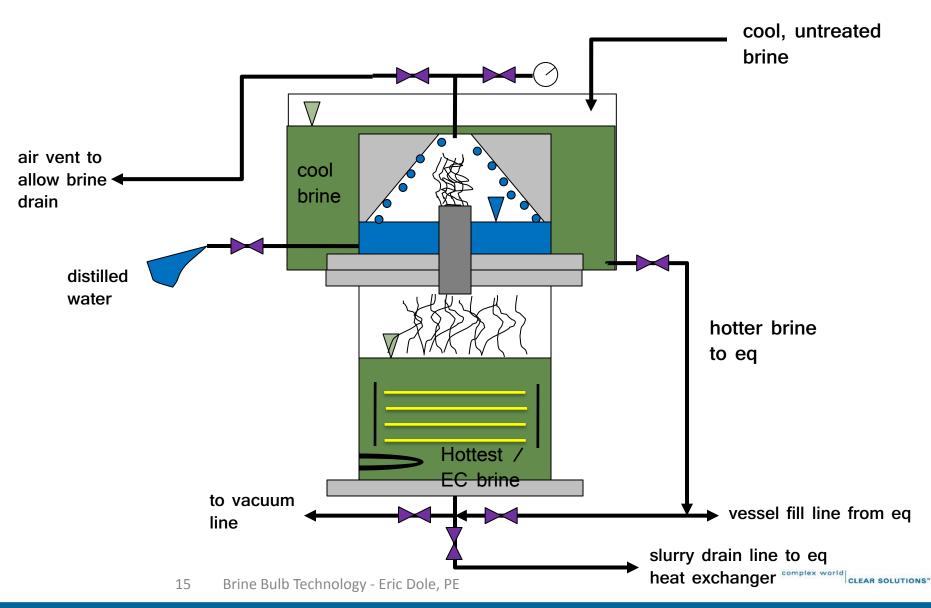

- Multiple Effect Vacuum Distillation + Electrocoagulation (EC)
 - Alternating current EC
 - Floods water w/ electrons, Fe+ and OH-; neutralizes charged particles; drives precipitation of cations and anions w/out adding salts
 - Electrons excite water molecules and breaks surface tension bonds that result in 35% reduction in specific heat and 84% reduction in latent heat of vaporization
 - Provides 3-5 log virus removal in 76oF water
 - Creates hydrophobic sludge (see ALPHA Prototype Study)



• BBT[™] utilizes:

FETRA TECH

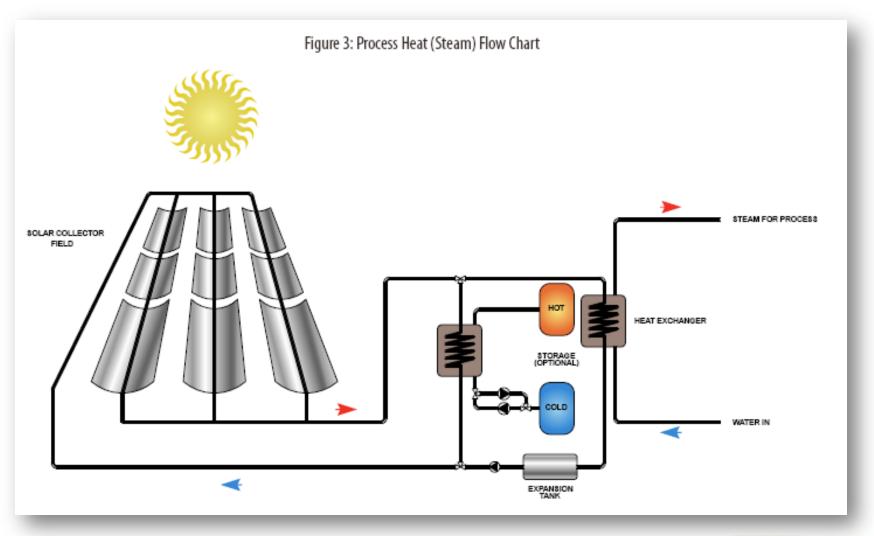
- Micro-turbine technology to replace RO concentrate valve
 - Produces significant "green energy" otherwise wasted through concentrate valve
 - Reduces electrical requirement of BBT
 - Accomplishes pressure sustaining feature of concentrate valve


TETRA TECH

TŁ

- BBT[™] can be used as a stand-alone unit or in parallel w/RO
- BBT[™] achieves high removal efficiencies:
 - Suspended / dissolved solids
 - Colloidal solids
 - FOG
 - Bacteria / viruses
 - Heavy metals
 - Organics / inorganics

BBT Typical Schematic - Flashing Chamber


Water Boiling Points at Various Pressures

Video of BBT boiling RO concentrate (later in presentation) at 95 deg F at 23" Hg...35% lower than indicated in table due to patented heating system.

Vacuum (In/Hg	Boiling Point	Vacuum (In/Hg)	Boiling Point
29	76.62	7	198.8 7
28	99.93	6	200.96
27	114.22	5	202.25
26	124.77	4	204.85
25	133.22	3	206.70
24	140.31	2	208.50
23	146.45	1	210.25
22	151.87	Gauge Lbs.	
21	156.75	0	212.0
20	161.19	1	215.6
19	165.24	2	218.5
18	169.00	4	224.4
17	172.51	6	229.8
16	175.80	8	234.8
15	178.91	10	239.4
14	181.82	15	249.8
13	184.61	25	266.8
12	187.21	50	29 7.7
11	189.75	75	320.1
10	192.19	100	337.9
9	194.50	125	352.9
8	196.73	200	387.9

BBT[™] Concentrated Solar Heat Source Schematic

17 Brine Bulb Technology - Eric Dole, PE - Courtesy of SOPOGY

complex world

 Raw water consisted of 10 gal mixture of saturated salt
brine and RO concentrate
from Scottsdale AZ WWTP + 1
cup of flowback (as seen in mason jar). Raw Water TDS > 300,000 mg/L

• Distilled water in graduated cylinder to left at TDS = 550 mg/L

 Electro-coagulated solids after 35 min of runtime at 120 V / 13 amps / 60Hz

• Settled solids after 5 min

complex world CLEAR SOLUTIONS"

RW = raw water; TW1 = unpurged treated water; TW2 = purged treated water

BBTTM Removal Efficiencies (ALPHA Prototype)

- RO concentrate grab sample collected on 3/23/11 from AZ WRF tertiary treatment

ANALYTE	RW	TW_1 % Ren	ח TW_1	TW_2 % Rem	TW_2	MDL	UNIT
Alkalinity, Bicarb	436	94.5	% 24	95.4%	ND	20	mg/L
Alkalinity, Total	436	94.5	% 24	95.4%	ND	20	mg/L
Arsenic, As	0.0086	-33.7	% 0.0115	73.3%	0.0023	0.0050	mg/L
Barium, Ba	0.588		% 0.0427	98.4%	0.0096	0.0050	mg/L
Boron, B	1.24	29.7	% 0.872	73.7%	0.326	0.050	mg/L
Calcium, Ca	550		% 2.57	99.8%	0.92	0.50	mg/L
DOC	39.8	57.8	% 16.8	89.6%	4.15	5.0	mg/L
Chloride, Cl	2350		% 47.4	99.6%	ND	10	mg/L
Conductivity, Lab	20900	98.8	% 260	99.6%	83.2	2	μmho
Copper, Cu	0.0180		% 0.0096	86.1%	0.0025	0.0050	mg/L
Fluoride, F	2.2	90.9	% ND	90.9%	ND	0.2	mg/L
Iron, Fe	0.288		% 0.022	82.6%	ND	0.050	mg/L
Magnesium, Mg	186	99.5	% 0.93	99.8%	0.44	0.500	mg/L
Manganese, Mn	0.126		% 0.0291	95.9%	0.0052	0.0050	mg/L
Molybdenum, Mo	0.0315	84.1	% ND	84.1%	ND	0.0050	mg/L
Nickel, Ni	0.0120		% 0.0030	58.3%	ND	0.0050	mg/L
Nitrate, NO3	45.7	99.1	% 0.4	99.6%	ND	0.2	mg/L
Nitrite, NO2	0.2	0.0	% ND	0.0%	ND	0.2	mg/L
Phosphorus, Ortho, P	19.6	97.4	% ND	96.8%	0.627	0.5	mg/L
Potassium, K	216		% 1.40	99.8%	0.36	0.50	mg/L
TDS	7730	98.4	% 120	99.6%	32	20	mg/L
Selenium, Se	0.0076	34.2	% ND	34.2%	ND	0.0050	mg/L
Silica, SiO2	75.8	92.1	% 6.00	97.7%	1.77	1.05	mg/L
Sodium, Na	1650		% 13.2	99.8%	3.36	0.50	mg/L
Strontium, Sr	7.25	99.6	% 0.0326	99.9%	0.0101	0.0050	mg/L
Sulfate, SO4	1930	99.5	% ND	99.5%	ND	10	mg/L
Uranium, U	0.0084	40.5	% ND	40.5%	ND	0.0050	mg/L
Vanadium, V	0.0070	28.6	% ND	28.6%	ND	0.0050	mg/L

22 Brine Bulb Technology - Eric Dole, PE

CLEAR SOLUTIONS"

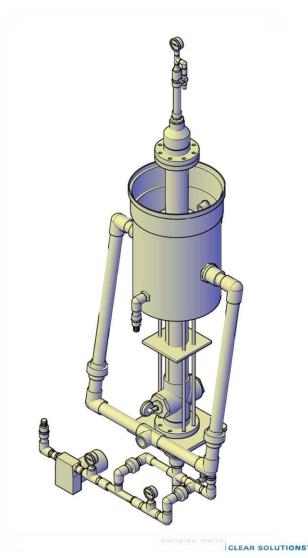
TETRA TECH

BBTTM Removal Efficiencies (ALPHA Prototype) - Demo conducted on 12/27/12 - Raw water consisted of 10 gal mixture of saturated salt brine + RO concentrate seed from AZ WRF + 1 cup of flowback

AN	ALYTE	RW	TW	TW % Removal	MDL	UNIT
	Ag	0.00022	0.00022	0%	0.0002	mg/L
	Al	40.8	0.116	100%	0.0138	mg/L
	As	0.0041	0.0131	-222%	0.0041	mg/L
	В	0.136	1.91	-1300%	0.1362	mg/L
	Ва	0.391	0.110	72%	8E-05	mg/L
	Ве	0.00015	0.00015	0%	0.0001	mg/L
	Ca	181.4	19.46	89%	0.0041	mg/L
	Cd	0.00010	0.00010	0%	0.0001	mg/L
	Со	0.000134	0.000138	-3%	0.0001	μmho
	Cr	0.00027	0.00027	0%	0.0003	mg/L
	Cu	0.280	0.0231	92%	0.0009	mg/L
	Fe	0.0004	0.011	-2788%	0.0004	mg/L
	К	230.6	2.935	99%	0.0315	mg/L
	Li	0.005	0.05208	-865%	0.0054	mg/L
	Mg	50.92	6.64	87%	0.0003	mg/L
	Mg	52.176	6.57814	87%	0.0004	mg/L
	Mn	0.371	0.16325	56%	9E-05	mg/L
	Na	94243.5	198.1	100%	0.0211	mg/L
	Ni	0.0008	0.00474	-459%	0.0008	mg/L

RW = MDL = instrument noise

Approx. [TDS RW] = [Na] + [Cl] + [Mg] + [Ca] + [HCO3]+ [SO4] = 247,000 mg/L Approx. [TDS TW] = [Na] + [CI] + [Mg] + [Ca] + [HCO3]+ [SO4] = 570 mg/L% [TDS] Removal = 99.8%


2.48944 144.233 98% 0.0197 mg/L Ρ 0.00156 Pb 2.037 100% 0.0015 mg/L 8.88491 S 250.741 96% 0.0061 mg/L 0.00429 100% 0.0043 mg/L Se 4.476 Si 7.25370 0.2195 mg/L 0.219 -3205% 0.13534 1.471 8E-05 mg/L Sr 91% TI 0.00145 0.00145 0% 0.0015 mg/L 1.676 1.676 0% 1.6762 mg/L U V 0.00093 0.0003 mg/L 0.000 -212% 7.25370 94% 0.0003 mg/L Zn 129.137 Sn 0.003 0.13534 -4295% 0.0031 mg/L 0.0020 0.0020 0% 0.002 mg/L Mo 0.00331 0.00331 0.0033 mg/L 0% Sb 0.001 0.00093 -56% 0.0006 mg/L Ti F 0.050 0.050 0% 0.0500 mg/L 345.2 Cl 152508.5 100% 0.1000 mg/L 0.10703 0.100 -7% 0.1000 mg/L Br r 2.57500 0.1000 mg/L NO3 26.814 90% 0.5 0.5 0% 0.5000 mg/L **PO4** 20.16 -1916% 1.00 1.0000 mg/L SO4

> complex world CLEAR SOLUTIONS"

BBT[™] BETA Prototype

- 1 gpm unit completed in April 2013
- Processed

- RO concentrate from TX nitrate removal facility
- Flowback / produced water
- Produce distilled water quality
- Purpose: Validate kWh/1,000 gal and removal efficiencies

BBTTM BETA Prototype - Processing RO Concentrate

Video

BBT[™] BETA Prototype - Lab Analysis Results

RW Results of TX RO concentrate sampled 5/30/13

Customer Sample ID TXRO- Sample Date/Time: 5/30/13 Lab Number: 130530	3 10:50 AM				
Test	Result	Method	LQL	Date Analyzed	Analyzed By
Total Dissolved Solids	4381 mg/L	SM 2540-C	5	6/3/13	ISG
<u>Total</u> Selenium	0.0532 mg/L	EPA 200.8	0.0008	6/4/13	VDB

TW Results of BBT on TX RO concentrate sampled 5/30/13


- Accidentally allowed RW to enter distilled water collection trough. Did not purge full volume of RW prior to grab sample. This led to lower than normal removal efficiency.

Customer Sample ID TXRO-CONC-TWBBT-53013 Sample Date/Time: 5/30/13 11:20 AM Lab Number: 130530056-07						
Test	Result	Method	LQL	Date Analyzed	Analyzed By	
Total Dissolved Solids	1058 mg/L	SM 2540-C	5	6/3/13	ISG	
<u>Total</u> Selenium	0.0098 mg/L	EPA 200.8	0.0008	6/4/13	VDB	

BBT BETA Prototype - Processing Produced H2O from Colorado O&G Well

BBT BETA Prototype - Processing Produced H2O from Colorado O&G Well

TE TETRA TECH

BBT BETA Prototype - Processing Produced H2O from Colorado O&G Well

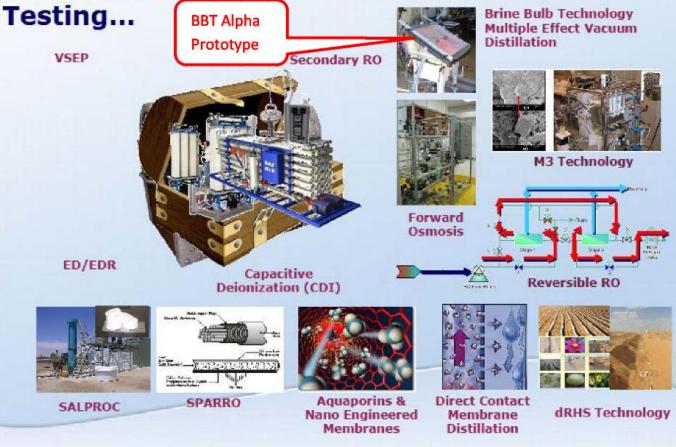
TE TETRA TECH

BBT BETA Prototype

- Produced Water Test Run ICP Results from CSM

DATE: 6/27/13	Sample Location: Produced Water from CO O&G We			CO O&G Well	Removal	Efficiency
	Detection		EC Blowdown	Condensate	RW to EC	RW to
Analyte	Limit	Raw Water	filtered	unfiltered	Blowdown	Condensate
	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
As	0.00200	0.3531		0.0061		98%
В	0.03994	3.2097	2.6393	0.1443	18%	96%
Ва	0.00011	12.7207	8.3054	0.1292	35%	99%
Ca	0.00299	81.091	31.6769	33.4257	61%	59%
Cu	0.00034	0.3222	0.1764	0.0064	45%	98%
Fe	0.00254	0.5257		0.0454		91%
К	0.01531	19.4505	14.0707	2.3062	28%	88%
Li	0.00042	1.1100	0.8009	0.0275	28%	98%
Mg	0.00029	5.0190	5.0960	19.5400	-2%	-289%
Mn	0.00005	0.0633		0.0041		93%
Na	0.00655	1233.119	1139.6283	106.2194	8%	91%
Ni	0.00022	0.1469		0.0041		97%
Р	0.00165	30.7996	1.0538	0.1747	97%	99%
Pb	0.00045	0.1672	0.0808	0.0011	52%	99%
S	0.01211	5.3540	4.5102	50.1457	16%	-837%
Se	0.00118	0.3126		0.0100		97%
Si	0.03926	18.1066	18.3608	6.9044	-1%	62%
Sr	0.00003	8.6041	6.1086	0.5315	29%	94%
Zn	0.00016	1.1795	1.2457	0.3041	-6%	

TE TETRA TECH


BBTTM BETA Prototype Conclusions

- Incorporates MEVD, EC and MT into one unit process to achieve high quality water at low kWh/1,000 gal
- Patented heating element results in

- 35% reduction in specific heat capacity
- 84% reduction in latent heat of vaporization
- Approximately 0.2 lb/1,000 gal of iron blade consumption
- Removal efficiency is a function of amp density, time, blade material, pH and solids separation technique.
- Operates better at higher TDS
- Condensation continues with unit off until system reaches equillibrium

BBT "Emerging Technology"

There are Numerous "Cutting Edge" Technologies that can be Considered for

"Recovery & Concentrate Management – A Look at 3 Local Projects"; Author: Guy Carpenter, PE, Carollo Engineering that was presented at the WRRC 2011 Annual Conference. AND "Demonstrating Innovative Inland Concentrate Management Solutions": Author: Guy Carpenter, PE Carollo Engineers and Brandy Kelso PE, City of Phoenix Water Dept. that was presented at

complex world CLEAR SOLUTIONS"

the 2011 26th Annual Water Reuse Symposium

Presentation.

BBT "Emerging Technology"

TETRA TECH

Recent Proven Technologies

- Capacitive Dionization, (Carbon Aerogel Anode and Cathodes, LLNL Technology)
- Brine Bulb Technology, energy recovery from RO system for heating and further concentrating RO Brine (Hydrosystems Engineering)
- DewVaporation (Alta)

"Advances in Concentrate Minimization and Disposal"; Author: Kevin Alexander, P.E. Separation Process Inc. and presented at the International Water Association Annual Conference 2008.

BBT Next Steps

- Currently in negotiations with investors for future prototypes
 - Tetra Tech to assist with design
- Need further R&D to substantiate prelim findings
- Liquid waste streams like
 - RO concentrate
 - Flowback or produced water
 - Mine waste

- Cooling tower blowdown
- Desalination
- Municipal / industrial waste
- High TDS waters

Acknowledgments

- Dr. Tzahi Cath, Colorado School of Mines
- Central AZ Salinity Study
- Wife

QUESTIONS

<u>Contact:</u> Eric Dole, PE email: eric.dole@tetratech.com Phone: 720-409-2432